Persistent, Bioaccumulative, Toxic Chemicals: Why the Concern?

Ted Schettler MD, MPH Science and Environmental Health Network

BizNGO; December, 2014

Persistent, bioaccumulative, and toxic chemicals (PBTs)

- Toxic, long-lasting substances that can build up in the food chain and general environment to levels that are harmful to human and ecosystem health.
- Generally applies to organic compounds; inconsistencies among agencies as to how to classify metals (e.g. lead, cadmium, mercury)

Persistent, BT

- <u>Persistence</u>:
 - half-life > 60 days in water, soil, sediment; > 2 days in air
 - Depends on intrinsic properties of the chemical and to some extent, on environmental conditions

P, Bioaccumulative,T

<u>Bioaccumulation</u>:

- Bioconcentration factor or Bioaccumulation factor > 1000 (EPA)
- BAF = Ratio of the concentration of a substance in an organism to the concentration in water, based on uptake directly from the surrounding medium and food
- BCF = Ratio of the concentration of a substance in an organism to the concentration in water, based only on uptake directly from the surrounding medium
- Many PBTs are fat soluble; octanol: water coefficient can be used to predict BCF

ppm = parts per million. Adapted from: US Environmental Protection Agency.

Adding halogens (particularly fluorine, chlorine, bromine atoms)

- Tends to increase fat solubility (there are exceptions)
- Create strong chemical bond with carbon; increases resistance to metabolic breakdown
 Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Period

Outer shell of halogens contains 7 electrons (unstable); by attracting an additional electron and filling the outer shell, becomes more stable

Grou	up	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Perio 1 2	3 4					AI O	on Met kali Me kaline ransitio	etals Metals		 Noble Gases Metalloids Halogens Other Metals 				5 B	6 C	7 N	8 0	F	2 He 10 Ne
3		11 Na	12 Mg			Rare Earth Elements								13 Al	14 Si	15 P	16 S	17 CI	8 Ar
4		19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	ю Кг
5		37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	4 Xe
6	Ī	55 Cs	56 Ba	57* La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	6 Rn
7	8	87 Fr	88 Ra	89** Ac	104 Rf	105 Db	106 Sq	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Jus	118 Juo
																		∇	
* Lε	*Lanthanides			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 T m	70 Yb	71 Lu		
••A	**Actinides			90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

PB,Toxicants

- Associated with a range of adverse human and wildlife health effects, including effects on:
 - the nervous system, (e.g. mercury compounds; lindane)
 - the endocrine system (e.g. TBBPA; flame retardant; thyroid disruption)
 - the immune system (e.g. some brominated flame retardants)
 - reproductive and developmental toxicity (e.g. PBDEs)
 - cancer (e.g. p-dichlorobenzene [mothballs, disinfectant])

PBT challenges

- The challenge in reducing risks from PBTs arises from their ability
 - to travel long distances,
 - to transfer rather easily among air, water, and land, and
 - to linger for generations in people, wildlife, and the environment

Source: Environment Canada.

Source: Arctic Monitoring and Assessment Programme.

How many PBTs are in commerce?

- Estimates vary: probably several hundred; may be 1000
- Depends on:
 - Choice of cut-off for persistence and bioaccumulation
 - Methods for determining P, B, and T; Measured? Calculated? Estimated?

The Stockholm Convention (UNEP)

- The Stockholm Convention on Persistent Organic Pollutants is a UNEP-sponsored global treaty to protect human health and the environment from some PBTs
- Adopted in 2001 and entered into force in 2004
- Requires its parties to take measures to eliminate or reduce the release of (listed) POPs into the environment.
- The US has not ratified the treaty

Stockholm Convention chemicals

- Original 12 chemicals banned or restricted by Stockholm Convention
 - Pesticides: aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, hexachlorobenzene, mirex, toxaphene;
 - Industrial chemicals: hexachlorobenzene, polychlorinated biphenyls (PCBs); and
 - By-products: polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF)

Chemicals more recently added to Stockholm Convention

- Chlordecone
- Hexabromobiphenyl
- Pentachlorobenzene
- Alpha- and beta- hexachlorocyclohexane; lindane
- Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride (PFOS)
- Pentabromodiphenyl ether; Octabromdiphenyl ether
- Endosulfan

Case Study

Flame retardants

How Are We Exposed to Flame Retardants?

Flame retardants

- Halogenated flame retardants (contain bromine or chlorine)
 - PBDEs, TBBPA, hexabromocyclododecane (HBCD), chlorinated tris (TDCP, TCEP), Declorane plus
- Phosphorus based
- Nitrogen based
- Inorganic (e.g. aluminum, magnesium oxides)

Polybrominated diphenyl ethers (PBDEs) resemble PCBs

Production banned in 1977 (toxicity and widespread contamination) Neurodevelopmental toxicity studies began to surface in early 1980s;

Multiple longitudinal studies in cohorts around the world confirm adverse impacts on developing brains of children

Halogenated flame retardants

- Polybrominated diphenyl ethers (PBDEs)
 - Toxicity in wildlife and lab animals demonstrated in 1990s
 - Behavioral effects in lab animals-2001
 - In humans, associations with:
 - Neurodevelopmental toxicity (Herbstman, 2010)
 - Thyroid disruption
 - Abnormal reproductive tract development (association with cryptorchidism reported; Main, et al., 2007)
 - Increased time to pregnancy (Harley, et al., 2010)
 - decaBDE: possible human carcinogen (EPA)

Prenatal exposure to PBDEs and neurodevelopment

n = 329; adjusted for multiple confounders; co-variables; effect modifiers; Bayley Scales of Infant Development; Wechsler Scale of Intelligence

Herbstman, EHP, Jan 2010; two additional studies since 2010: Eskenazi, 2013; Chen, 2013

Replacement HFRs

- hexabromocyclododecane (HBCD): persistent organic pollutant (POP); developmental neurotoxicant; UN recommends phase out (used in polystyrene foam insulation; worker/occupant exposures [dust])
- Chlorinated tris and related compounds: neurotoxic, probably carcinogenic, inadequately tested (used in foam, furniture)
- Newer flame retardants showing up in household dust (Dodson, EST, 2012)
- Sources and toxicity often not well understood

Conclusions

- PBTs are toxic, long-lasting substances that:
 - travel long distances,
 - transfer rather easily among air, water, and land, and
 - linger for generations in people, wildlife, and the environment
- They build up to levels that are harmful to human and ecosystem health, causing a range of adverse effects.
- Exposures and effects are slow to reverse
- These features provide a rationale for phasing PBTs out of commerce except for uses where the use is critical or essential