TOOLS & RESOURCES FOR SAFER CHEMICALS

BizNGO

December 9, 2015

Margaret H. Whittaker ToxServices LLC

Agenda

- What is the GreenScreen for Safer Chemicals?
- How can the GreenScreen promote chemical optimization throughout the supply chain?
- What are new developments in GreenScreen methodology?
- How does GreenScreen fit into our shared goal of sourcing safer chemicals in products?

http://www.wordclouds.com/ Word cloud of BizNGO brochure

What is the GreenScreen?

- The GreenScreen is a comparative Chemical Hazard Assessment (CHA) method developed by Clean Production Action
 - Most current method is version 1.2
 - GreenScreen was released on March 20, 2007
- Builds on the U.S. EPA DfE Alternatives Assessment approach and other national and international precedents (OECD, GHS)
- GreenScreen is freely and publicly accessible, transparent, and peer reviewed
- GreenScreen complements other sustainability tools:
 - Based on Green Chemistry Principles
 - Supports Risk Assessment
 - Complements Life Cycle Assessment
 - A key part of Alternatives Assessment

What is the GreenScreen?

There are two levels of assessment

- GreenScreen List Translator
 - Automated tool that screens the chemicals against specified authoritative and screening lists
 - Scores: LT-1 (equivalent to BM-1), LT-P1, LT-U
 - Quickly identifies chemicals to avoid and why
 - Easily accessible, automated tool
 - Useful tool for identifying "known" bads; not as useful for newly developed chemicals
- Full GreenScreen assessment
 - Scientists (usually toxicologists) prepare full GreenScreen assessment
 - CPA Licensed Profilers most qualified (see http://www.greenscreenchemicals.org/) for list of qualified profilers
 - Comprises selection, review, and integration of chemical data and modeling into comprehensive assessment of a minimum of 18 hazard endpoints

The GreenScreen List Translator

GreenScreen List Translator

- Readily identifies chemicals of concern
- Based on authoritative lists
- Doesn't require toxicology expertise
- Used to identify GreenScreen Benchmark 1 Chemicals
 - LT-1 chemicals are Benchmark 1 chemicals (unless proven otherwise)
 - LT-P1 chemicals may be Benchmark 1 chemicals
 - LT-U chemicals are not known to be Benchmark 1 need further assessment to determine Benchmark score

Obtaining GreenScreen List Translator

Manual Version:

http://<u>http://www.greenscreenchemicals.org/me</u>thod/greenscreen-list-translator

Automated Tool: Incorporated into Pharos http://www.pharosproject.net/

ww.pharosproject.net/material/show/2004665													
OPharos	Build	ing Products	Chemicals and Materials	Certifications	Dashboard	Logout							
Dashboard / Chemicals and Materials / [106-46-7] 1,4-D	ICHLOROBENZENE												
[106-46-7] 1,4-DICHLOROBE	NZENE												
● General Information ▲ Hazards III Compound	Groups C Life Cycle Rese	arch 💠 Gr	eenScreen	Q View produ material	cts containing th	is							
Direct Hazards:													
THE DAY DECAMPON	US NIH - Report on Carcinogens - Reasonably Anticipated to be Human												
Carcinogen	Carcinogen												
REPRODUCTIVE Japan - GHS - Toxic to repr	Japan - GHS - Toxic to reproduction - Category 1B												
MAMMALIAN Japan - GHS - Specific targe Category 1	et organs/systemic toxicity follow	ving repeated ex	kposure - +3	for more infor									
SKIN SENSITIZE Japan - GHS - Skin sensitize	er - Category 1												
ACUTE AQUATIC	nents) - H400 - Very toxic to aqu	uatic life ⊁	•5										
CHRON AQUATIC	Image: Second state of the state o												
EVE IRRITATION	EU - GHS (H-Statements) - H319 - Causes serious eye irritation												
SKIN IRRITATION Www.Zealand - GHS - 6.3A	New Zealand - GHS - 6.3A - Irritating to the skin												
ORGAN TOXICANT WW Zealand - GHS - 6.98	(inhalation) - Harmful to human t	target organs o	r systems										

1,4-Dichlorobenzene is a List Translator-1 (LT-1) Chemical

Three Steps to Safer Chemicals: GreenScreen

Assess and classify hazards
 Apply the Benchmarks
 Make informed decisions

Step 1: Assess & Classify Hazards

- a) Identify chemical constituents along with relevant and feasible transformation products
- b) Collect and evaluate data from all relevant sources (using test data, literature, models, analogs, hazard lists, etc.) for the chemical under assessment
- c) Assign level of concern (e.g., vH, H, M, L) and level of confidence for each hazard endpoint

d) Complete a hazard table for each of the 18 screened endpoints

Chemical	Gro	oup	I۲	lun	nan			Grou	p II ŀ	luma		Eco	tox	Fa	te	Physical		
Name	С	Μ	R	D	E	AT	ST	Ν	SnS	SnR	IrS	IrE	AA	CA	Ρ	В	Rx	F
Chemical 1	Μ	L	L	Μ	М	L	L	М	L	DG	L	Н	L	L	νH	Μ	L	L
Chemical 2	L	L	Μ	Μ	H	L	н	Μ	L	L	Μ	Μ	н	Н	νH	νH	L	L
Chemical 3	L	L	м	Н	DG	L	н	DG	L	DG	L	L	L	DG	М	М	L	М

Level of Confidence

Bold H, M, or L = measured data or high quality surrogate

DG= data gap

Italic H, M, or L = estimated data (analog or model)

Step 2: Identify Benchmark Score from Hazard Classifications

BENCHMARK 1

- PBT = High P + High B + (very High T (Ecotoxicity or Group II Human) or High T (Group | or II* Human)]
- b. vPvB = very High P + very High B
- c. vPT = very High P + (very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- d. vBT = very High B + (very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- e. High T (Group I Human)

Avoid—Chemical of High Concern

f this chemical and its breakdown products pass all of these criteria. then move on to

Aligned with Regulatory Drivers \leftarrow

Benchmark U = Undetermined

due to insufficient data

Step 2, cont'd: Benchmark 2 Chemical

		Grou	p I H	uman				Gı	roup	o II a	nd II ³	* Huma	n		Eco	otox	Fa	te	Phy	vsical	
	Carcinogenicity	Mutagenicity/Genotoxicity	Reproductive Toxicity	Developmental Toxicity	Endocrine Activity	Acute Toxicity	Cristania Taviaitu	Systemic Toxicity		Neurotoxicity		Respiratory Sensitization*	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	a. M b. Hi	odera gh P -	ite P - + Hig	h B	erate B	
							S	R *	S	R *	*	*								e T (Ecot e T (Ecot	
	L	м	L	L	L	м	н	Н	м	мм		L	н	н	м				-	I Huma xicity or	
	2e								2	?f					g. Hi	gh Fla	amma	ability	or High	Reacti	
Γ		Chei	mic	al Na	ame	2	(Gre	Pen	Sc	ree	en Be	nchr	mar	'k					Rat	iona

hemical A is a BM 2 chemical Meets BM 2e classification Meets BM 2f classification

- derate T (Ecotoxicity or Group I, II, or II* Human)
- y or Group I, II, or II* Human)
- y or Group I, II, or II* Human)
- p II Human) or High T (Group II* Human)
- tivity

r Substitutes

Chemical Name	GreenScreen Benchmark	Rationale
Chamical		2e. Moderate Mutagenicity/Genotoxicity
Chemical A	2 - Orange	2f. High Systemic Toxicity - Repeated Exposure

Step 3: Making Informed Decisions

- GreenScreen scores can be used without toxicology training
- Use a chemical's full GreenScreen hazard table, not just the Benchmark score when comparing hazards of chemicals
- Consider the chemical's specific application and use
- Apply Risk Management as part of your decisionmaking

As we've heard earlier in the conference, all chemicals need risk management, but it's a lot easier with inherently safer chemicals...

Using GreenScreen to Promote Chemical Optimization throughout the Supply Chain

GreenScreen drives chemical optimization:

- RSL/MRSL creation
- Preferred materials/positive lists
- Integral part of alternatives assessments
- Guide new product development
- Part of ecolabels and standards

Alternatives to Methylene Chloride in Paint and Varnish Strippers

Availability of Safer Alternatives & Requirements for Meeting Stage 1 of the California Safer Consumer Products Regulations

OCTOBER 27, 2015

Molly Jacobs, MPH - Bingsuan Wang, PhD - Mark S. Rossi, PhD

Driving Hazard Reduction in Supply Chains: MRSL and RSL

GreenScreen is used to populate Restricted Substances Lists (RSLs) as well as Manufacturing Restricted Substances Lists (MRSLs)

- An MRSL differs from an RSL: An MRSL restricts levels of hazardous substances in formulations used and potentially discharged into the environment during manufacturing, not just chemicals present in finished products.
- MRSLs are important for industries that utilize formulations that can be released to the environment in large quantities (textile, apparel, footwear sectors)

The Zero Discharge of Hazardous Chemicals (ZDHC) coalition included GreenScreen and GreenScreen List Translator as part of creating the ZDHC MRSL

(http://www.roadmaptozero.com/programme-documents/)

ZDHC MRSL			
CAS No.	Substance	Group A: Raw Material and Finished Product Supplier Guidance	Group B: Chemical Supplier Commercial Formulation Limit
Alkylphenol (AP) and A	lkylphenol Ethoxylates (APEOs): including all isomer	rs	
104-40-5,			
11066-49-2	Nonylphenol (NP), mixed isomers		250 ppm
25154-52-3	Nonyiphenor (Nr), mixed isomers		250 ppm
84852-15-3			
140-66-9			
1806-26-4	Octylphenol (OP), mixed isomers		250 ppm
27193-28-8			
9002-93-1		No intentional use	
9036-19-5	Octylphenol ethoxylates (OPEO)		500 ppm
68987-90-6			

Driving Hazard Reduction in Supply Chain: Positive Lists

- Levi Strauss & Co. uses GreenScreen for formulations used throughout the textile manufacturing process
 - http://www.greenscreenchemicals.org/news/article/QA-bart-sights

of wear in every Dair!

13

			С	hemi	cal H	lazaı	rd Su	ummar	y Ta	able	of Ch	emic	als l	Jsed	in Fo	ormu	latio	n REI	DAC	ΓED					
				Gi	roup 1	Hum	nan He	ealth			Grou	ip II ar	ld II* ⊦	lumar	Healt	h		Ecc	otox.	Fa	ate	Phys	sical		
Chemical (FMDC#)	CAS RN	Functional use	% in Ingredient	Carcinogenicity	Mutagenicity	Reproductive	Developmental	Endocrine Activity	Acute Toxicity	Syster			INGULOTOXICITY	Skin Sensitization*	Respiratory Sensitization*	Skin Irritation	Eye Irritation	Acute Aquatic	Chronic Aquatic	Persistence	Bioaccumulation	Reactivity	Flammability	GreenScreen [®] Benchmark Score, SCP Screen Results	0
										S	r*	S	r*												
REDACTED																									
(FMDC-634)	[REDACTED]	Carrier	Redacted	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	U.S. EPA SCIL Full Green Circle	1
(FMDC-604)	[REDACTED]	Mediator	Redacted	L	L	L	L	DG	L	DG	L	DG	DG	М	DG	н	н	М	М	vL	vL	М	L	Benchmark 3	

A Chemical Hazard Assessment is a critical component of a Chemical Alternatives Assessment (CAA)

• A CHA can be performed as part or independently of a full CAA

The Six Steps of a CAA are shown below:

- Chemical hazard assessment (CHA): a systematic process of assessing and classifying hazards across an entire spectrum of endpoints and severity
- Life cycle thinking
- Exposure assessment
- Technical/functional assessment
- Economic assessment
- Social impact assessment

GreenScreen was recently used as part of a BizNGO project to:

- (1) Identify less hazardous alternatives to methylene chloride in paint stripper products
- (2) Identify candidate alternatives for methylene chloride in paint stripping formulations that will likely be considered in actual/future Stage 1 submissions for this "priority product" in California; and
- (3) identify challenges and needs confronting compliance with the California SCP alternatives analysis process

http://www.greenscreenchemicals.org/news/article/methylenealternatives-assessment-new-report-webinar

Alternatives to Methylene Chloride in Paint and Varnish Strippers

Availability of Safer Alternatives & Requirements for Meeting Stage 1 of the California Safer Consumer Products Regulations

OCTOBER 27, 2015

Molly Jacobs, MPH - Bingsuan Wang, PhD - Mark S. Rossi, PhD

			Grou	p I Hu	man					Group	0 &	Humar	1			Ecoto				Phy	vsical	Benchmark
Chemical Name	CASRN	C	М	R	D	Ε	AT	Single repeated Single rep			SnS	SnR	IrS	IrE	AA	CA	Ρ	В	RX	F	Score	
								Single	repeated	Single	repeated											
Methylene chloride	75-09-2	н	NE	DG	DG	М	М	νH	н	vH	vH	L	DG	н	н	М	L	vH	٧L	L	L	1
Benzyl alcohol	100-51-6	L	L	L	М	DG	М	L	L	М	Н	н	L	L	H	L	L	vL	vL	L	L	2
2-(2-butoxyethooxy) ethanol	112-34-5	L	L	L	L	DG	L	L	н	DG	L	L	DG	М	н	L	L	٧L	vL	L	М	2
Dimethyl sulfoxide	67-68-5	L	L	L	L	DG	L	L	L	L	L	L	L	М	М	L	L	L	٧L	L	М	3
1,3-dioxolane	646-06-0	L	М	М	М	DG	L	М	М	м	L	L	DG	М	Н	L	L	М	٧L	L	н	2
Estasol (dibasic esters mixture)	95481-62-2	L	L	L	М	М	L	М	М	м	DG	L	DG	L	М	м	L	٧L	vL	М	L	2
d-Limonene	5989-27-5	L	L	DG	L	DG	L	L	L	DG	DG	н	DG	н	Н	vH	Н	٧L	м	L	М	2
Acetone	67-64-1	L	L	М	М	DG	L	М	М	М	М	L	DG	L	н	L	L	vL	vL	L	н	2
Methanol	67-56-1	NA	NA	NA	Н	NA	н	vH	NA	NA	NA	NA	NA	NA	NA	L	L	٧L	vL	NA	н	1
Toluene	108-88-3	DG	L	н	н	М	L	М	н	М	н	L	DG	Н	L	н	Н	Н	٧L	L	н	1
Formic acid	64-18-6	L	L	L	L	DG	н	vH	Н	vH	DG	L	DG	vH	vH	м	М	vL	٧L	L	м	2
Caustic soda	1310-73-2	L	L	L	L	L	н	vH	L	L	L	L	DG	vH	vH	М	DG	L	vL	М	L	2

- Two alternatives (methanol and toluene) were screened out due to high developmental/ reproductive toxicity (BM 1 scores for each)
- The remaining alternatives were safer, yet not free of hazards
 - DMSO has the lowest hazard profile (BM 3), but it can potentiate the hazards of other substances
- The project demonstrated that GreenScreen® is a useful tool in assessment in alternatives assessment
- Additional information about a substance such as conditions of use – needs to be considered in addition to hazard

Chemical	Benchmark Score
Methylene chloride	1
Benzyl alcohol	2
2-(2-Butoxyethooxy) ethanol	2
Dimethyl sulfoxide (DMSO)	3
1,3-Dioxolane	2
Estasol (dibasic esters mixture)	2
d-Limonene	2
Acetone	2
Wethanoi	
Toiuene	
Formic acid	2
Caustic soda	2

GreenScreen in Ecolabels and Standards

GreenScreen is now incorporated into multiple ecolabels and standards:

- TCO Certified Displays Standard 7.0 now requires all non-halogenated flame retardants to be assessed and have a Benchmark score of <u>> 2</u>
 - http://tcodevelopment.com/
- U.S. Green Building Council Leadership in Energy & Environmental Design (LEED) specifies GreenScreen and GreenScreen List Translator to obtain different credits:
 - LEED v4 Option 1: Material Ingredient Reporting (1 point), and Option 2: Optimization (1 point)
 - http://www.greenscreenchemicals.org/info/how-toleed-report-download

Mandate A.6.4.3:

Non halogenated flame retardants used in plastic parts that weigh more than 25 grams shall be on the publically available Accepted Substance List for TCO Certified. This means that the substance has been assessed by a licensed profiler according to GreenScreen[™] and been assigned a benchmark score ≥ 2

NEW GENERATIO

The following acceptance decisions apply to substances given Benchmarks 4, 3, 2, 1 or designated U (undefined):

- 4: Accepted (Few concerns)
- 3: Accepted (Slight concern)
- 2: Accepted (Moderate concern)
- 1: Not accepted (High concern)
- U: Not accepted (Unspecified)

CLEAN PRODUCTION

What are New Developments in Tools to Select Safer Chemicals?

Incorporating Terrestrial Toxicity Endpoints into GreenScreen

Human Health Group I	Human Health Group II and II*	Environmental Toxicity & Fate	Physical Hazards
Carcinogenicity	Acute Toxicity	Acute Aquatic Toxicity	Reactivity
Mutagenicity & Genotoxicity	Systemic Toxicity & Organ Effects	Chronic Aquatic Toxicity	Flammability
Reproductive Toxicity	Neurotoxicity	Other Ecotoxicity Studies when available*	
Developmental Taviaity	Skin Sensitization		
Developmental Toxicity	Respiratory Sensitization	Persistence	
	Skin Irritation		
Endocrine Activity	Eye Irritation	Bioaccumulation	

Standard GreenScreens evaluate aquatic toxicity for environmental toxicity

- The GreenScreen procedure specifies that additional ecotoxicity endpoints may be included when relevant
- Terrestrial/Foliar Invertebrate toxicity is the ability of a chemical to pose an adverse health effect to a species that lives on land (bees, birds, soil organisms)
- Three neonicotinoid pesticides were GreenScreened and assessed terrestrial and bird and bee toxicity
 - Evaluating "other" ecotoxicity studies is relevant because these formulations are applied to crops

Incorporating Terrestrial Toxicity Endpoints into GreenScreens

- Neonicotinoids (also called "neonics") are a • relatively new type of insecticide, marketed in the last 20 years:
 - Used to control sap-feeding insects, such as aphids on cereals and root-feeding grubs
 - They are systemic pesticides and are taken up by the ____ plant and remain active in the plant for many weeks
 - Neonics are the most widely used insecticides _____ worldwide – their total share of the global market for insecticides is at least 30% and is worth at least \$2.6 billion
 - Neonics don't kill bees, instead they impair a bee's ____ ability to learn, navigate, forage for nectar, and reproduce

Environ Sci Pollut Res (2015) 22:5-34 DOI 10 1007/s11356-014-3470-x

WORLDWIDE INTEGRATED ASSESSMENT OF THE IMPACT OF SYSTEMIC PESTICIDES ON BIODIVERSITY AND ECOSYSTEMS

Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites

N. Simon-Delso · V. Amaral-Rogers · L. P. Belzunces · J. M. Bonmatin · M. Chagnon · C. Downs · L. Furlan · D. W. Gibbons · C. Giorio · V. Girolami · D. Goulson · D. P. Kreutzweiser · C. H. Krupke · M. Liess · E. Long · M. McField · P. Mineau · E. A. D. Mitchell · C. A. Morrissev · D. A. Noome · L. Pisa • J. Settele • J. D. Stark • A. Tapparo • H. Van Dyck • J. Van Praagh • J. P. Van der Sluijs • P. R. Whitehorn · M. Wiemers

LETTER

doi:10.1038/nature16167

Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees

Dara A, Stanley¹, Michael P, D, Garratt², Jennifer B, Wickens², Victoria J, Wickens², Simon G, Potts² & Nigel E, Raine^{1,3}

Recent concern over global pollinator declines has led to pollination services¹⁸. Bumblebees are major pollinators of apples¹⁹

considerable research on the effects of pesticides on bees1-5. and many other crops across the world12, and are exposed to low levels Although pesticides are typically not encountered at lethal levels of pesticides when foraging in agricultural areas. Here we investigated in the field, there is growing evidence indicating that exposure to how exposure to low, field-realistic levels of a widely used neonicotifield-realistic levels can have sublethal effects on bees, affecting noid insecticide (thiamethoxam) could affect the ability of bumblebees their foraging behaviour^{1,6,7}, homing ability^{8,9} and reproductive to pollinate apple trees. We pre-exposed colonies to 2.4 parts per billion success^{2,5}. Bees are essential for the pollination of a wide variety of (ppb) thiamethoxam, 10 ppb thiamethoxam or control solutions (concrops and the majority of wild flowering plants¹⁰⁻¹², but until now taining no pesticide; rationale for selecting pesticide concentrations

Incorporating Terrestrial Toxicity Endpoints into GreenScreen

- Three neonics were GreenScreened, and DfE Alternatives Assessment terrestrial toxicity criteria were incorporated
 - All three neonics were BM 1 chemicals ____

NO₂ Table 15. Criteria for Other Forms of Ecotoxicity [49] Verv Verv Ecotoxicity High Moderate Low High Low Avian (acute oral, mg/kg) <10 10-50 51-500 501-2000 >2000 Avian (acute dietary, 1001- O_2N <50 50-500 501-1000 >5000 5000 ppm) Bees (acute, µg/bee) <2 2-11 >11 -----**Group I Human** Group II and II* Human Ecotox Fate Physical ST С Μ R Е Ν IrS IrE CA Ρ В D AT SnS* SnR* AA ATV AFI Rx single repeated single repeated* Imidacloprid М Μ Н vH Μ vH М DG vH vH н н vL 1 Thiamethoxam М Т Μ Μ L DG vL L L н L vH L Η Clothianidin Μ М Μ н Μ vH DG Μ

Acute Terrestrial Vertebrates Toxicity Score (ATV) Score (vH, H, M, or L): Includes birds and mammals Acute Foliar Invertebrates and Pollinators (AFI) Toxicity Score (H, M, or L): Includes bees **Because the maximum score for AFI toxicity per DfE criteria is a High, a score of High was considered equivalent to a Very High for this endpoint for benchmarking purposes

HN-NO2

F

L

MIDACLOPRID

Assessing Hazards from Mixtures of Chemicals

The consideration of mixture toxicities is addressed within CLP Regulation 1272/2008 and GHS

- GHS in the EU was implemented in Regulation (EC) No. 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures (CLP Regulation) which is legally binding and directly applicable in the Member States of the EU, whereas <u>GHS is not legally binding</u>.
- GHS and CLP are not identical
 - Although CLP is based UN GHS "building block approach", it does not include all the hazard categories included for a hazard class
 - e.g., category 4 of the hazard class for flammable liquids, or category 3 (mild irritant) of the hazard class for skin corrosion/irritation.

Tool #2: Incorporating CLP Mixture Criteria into GreenScreen

- Most chemical exposure occurs in the presence of multiple chemicals
 - However, most hazard and risk assessments are conducted on single chemicals
 - It is unrealistic to test every possible combination of chemicals
- GreenScreening mixtures
 - Most of the time, data on a mixture are not available and therefore, assessment of the GreenScreen's18 hazard endpoints is not possible for an overall discrete chemical formulation
 - a Benchmark score of U ("Hazard Unassignable") is usually assigned for a mixture.
- Applying CLP's approach (additive/non-additive) of classifying hazards in a mixture is being investigated in order to assign an overall benchmark (BM) score for a mixture.

Incorporating CLP Mixture Criteria into GreenScreen

- Each of the 18 GreenScreen hazard endpoints in a mixture will • receive a classification of concern ranging from High to Low based on CLP's mixture criteria for each hazard endpoint.
- The mixture score for each endpoint is automatically entered into the GreenScreen Inspector[™] Tool to automatically derive an overall Benchmark score for the mixture.
 - This automated tool is undergoing peer review

Classifying a Mixture Under CLP/GHS

Classification of a Mixture Based on its Components

- To assign an overall benchmark for a mixture, it is necessary to identify ingredient substances of the mixture in addition to their concentrations and CLP classifications for each hazard endpoint.
- Classification of a mixture is based on concentration thresholds which require using Cut-Off Limits (limits of concern) and a Generic Concentration Limit (GCL) which triggers the classification
 - <u>Cut-off value</u>: are the minimum concentrations for a substance to be taken into account for classification purposes.
 - <u>Generic Concentration limits (GCL)</u>: are the minimum concentrations for a substance which trigger the classification of a mixture if exceeded by the individual concentration or the sum of concentrations of relevant substances
- There are two different concepts about how a substance contributes to the classification of a mixture under CLP criteria: the Additive Approach and Non-Additive Approach

CLP Mixture Rules for Each Hazard Endpoint + GreenScreen Scoring

Non-additive

- Carcinogenicity (C)
- Mutagenicity/Genotoxicity (M)
- Reproductive Toxicity (R)
- Developmental Toxicity (D)
- Endocrine Toxicity (E)
- Systemic Toxicity/Organ Effects (ST)(Single Exposure)
- Systemic Toxicity/Organ Effects (ST)(Repeated Exposure)
- Neurotoxicity (N) (Single Exposure)
- Neurotoxicity (N) (Repeated Exposure)
- Skin Sensitization (SnS)
- Respiratory Sensitization (SnR)
- Reactivity (Rx)
- Flammability (F)

Additive

- Acute Mammalian Toxicity (AT) (additivity formula)
- Skin Irritation (IrS)
- Eye Irritation (IrE)
- Acute Aquatic Toxicity (AA)
- Chronic Aquatic Toxicity (CA)
- Persistence (P)
- Bioaccumulation (B)

In the Additive Approach,

concentrations of ingredients with the same hazard are added together

 if the sum of the concentrations of one or several classified substances in the mixture equals or exceeds the a generic concentration limit (GCL) set out for this hazard class/category, the mixture is classified for that hazard.

Under the Non-Additive Approach, if a mixture contains two chemicals, each below the GCLs defined for that hazard class, even if the sum of the two chemicals is above the limit, the mixture will not be classified.

Assessing Hazards from Mixtures of Chemicals

Snapshot of the ToxServices' Mixture Tool

Automated Mixtures Tool: Reproductive Toxicity(R) (Non-Additive)

GreenScreen hazard classification of High (H) for Reproductive Toxicity corresponds to CLP Category 1A/1B classification

 If the final mixture contains at least one ingredient that is present in the mixture at ≥ 0.3% and has a GreenScreen hazard classification of High (classified to GHS Category 1A or 1B)

GreenScreen hazard classification of Moderate (M) corresponds to CLP Category 2 classification

 If the final mixture contains at least one ingredient that is present in the mixture at ≥ 3.0% and has a GreenScreen hazard classification of Moderate (classified to GHS Category 2 for this endpoint).

	Cut-off/concentration lim	nits triggering clas	sification of a mixture as:				
Ingredient Classified as:	Category 1 reproductive to	oxicant	Catagory 2 reproductive toxicant				
	Category 1A	Category 1B	Category 2 reproductive toxicant				
Category 1A	≥ 0.3%						
Category 1B		≥ 0.3%					
Category 2 Carcinogen			≥ 0.1% [Note 1]				
			≥ 3.0 % [Note 2]				

Note 1: If a Category 2 reproductive toxicant ingredient is present in the mixture at a concentration between 0.1% and 3.0%, every regulatory authority would require information on the SDS for that product. However a label warning would be optimal.

Note 2: If a Category 2 reproductive toxicant ingredient is present in the mixture at a concentration of \geq 3%, both an SDS and a label would generally be expected.

Example: Calculating Overall Mixture Hazard Classification for Reproductive Toxicity

	TYSERVICES										Α	Auto	Gre	enS	cree	п ^{тм}	Scor	e									
	TOXICO	DLOGY RISK	ASSESSMENT CO	NSULTING	Table					er Mate	erial N														FORSTER	CHEMICS	
				1		1	ıp I H	uman	-			Gr	oup II	and II	* Hun	nan			Eco	tox	Fa	te	Phy	sical	-		
Inorgani c Chemica l?	C1 : 1N	Chemica l State	CAS#	Ingredient %	Carcinogenicity	MutagenicityGenotosicity	Reproductive Toxicity	Developmental Toxicity	Endocrine Activity	Acute Tozicity	-	Systemic Tozicity 	S		 Skin Senskization 	Respiratory Sensitization	Skin kritation	Ege Irrikation	Acute Aquatic Tozicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Reactivity	Flammability	Preliminary GreenScreen ™ Benchmark Score	Final GreenScreen ™ Benchmark Score	PBT Chec k
					С	м	R	D	E	AT	ST₅	STr	Ns	Nr	SNS"	SNR'	lrS	IrE	AA	CA	Р	в	R×	F			
No		Liquid	1	38%	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	4	4	
No		Solid	2	12%	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	4	4	
No		Liquid	3	1%	L	L	м	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	2	2	
No			4	7%	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	4	4	
No			5	3%	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	4	4	
No			6	15%	L	L	T	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	4	4	

The mixture was classified as Low (L) for reproductive toxicity based <u>on not</u> <u>meeting the criteria for Moderate</u> scoring.

Although the mixture contains one ingredient (CAS# 3) with a Moderate (M) classification for reproductive toxicity, it is present below the threshold set for Moderate (3%) and is not considered in the final Benchmark score.

The mixture was assigned an overall Benchmark score of 4

New Development #3: Benchmark 1 Structural Alert Project

To date, approximately 20% of GreenScreened chemicals are classified as Benchmark 1 chemicals:

 Many of these are CMRs/PBTs and total >150 chemicals

A project with the Univ. of Mass-Lowell is underway to assess the chemical structures of Benchmark 1 chemicals in order to create an overall Benchmark 1 composite structure

GS BENCHMARK 1

- a. PBT = High P + High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- b. vPvB = very High P + very High B
- c. vPT = very High P + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- vBT = very High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- e. High T (Group I Human)

Avoid—Chemical of High Concern

Benchmark 1 Structural Alert Project

In toxicology, the Ashby and Tennant composite structure for genotoxic alerts is well-known

 Easily depicts potential genotoxins, and is useful for carcinogenicity prediction

The 148 chemicals currently classified as BM-1 chemicals come from numerous chemical classes

- In a manner similar to Ashby and Tennant, the BM-1 structural alert project will identify an overall structure useful for predicting significant human health and environmental hazards
- Such a structure would be helpful during the chemical formulation process and easily flag potential problems

Ashby and Tennant (1988, 1989)

Conclusions

- The GreenScreen continues to evolve in order to incorporate best practices associated with assessing human health and environmental hazards
- Work is underway to incorporate mixtures assessment rules into the GreenScreen InspectorTM, which is a freely available tool
 - Peer review of the tool is expected to take 8-12 months
- Future action items:
 - Securing on-going funding to make the >700 GreenScreens publicly accessible

Thank you!

mwhittaker@toxservices.com