

Purchasing Safer Compostable Food Service Ware

Ann Blake, Principal, Environmental & Public Health Consulting James Ewell, Director, Sustainable Materials, GreenBlue Institute Shari Franjevic, GreenScreen Program Manager, Clean Production Action

Webinar Questions

File View Help 🌍 🗸	5 3
- Audio	
 ○ Telephone ⊙ Mic & Speakers <u>Settings</u> 	
⊈ 000000000 4)000	00000
- Questions	5
	*
[Enter a question for staff]	
[criter a question for start]	÷
	Send
web Webinar ID: 126-92	21-011
GoTo Webi	inar
GOIOWED	1160

- Post your question to the <u>Questions Panel</u> in your Control Panel
- Presentation and recording will be available at <u>cleanproduction.org</u>

Speakers

Ann Blake, PhD

Founder & Principal, Environmental & Public Health Consulting

Shari Franjevic

GreenScreen[®] Program Manager, Clean Production Action

James Ewell

Senior Director of Sustainable Materials, GreenBlue

Hazards of PFAS A FACT SHEET

Summary¹

PFAS is an acronym (**P**er- and Polyfluoroalkyl **S**ubstances) for a class of fluorinated organic chemicals containing at least one fully fluorinated carbon atom. The class includes more than 3,000 chemicals, although fewer are currently on the global market. PFAS vary in the number of carbon atoms forming the backbone of their molecule, from a chain of two carbons to large molecular weight polymers.²

PFAS are commonly used to manufacture non-stick, grease and stain-resistant coatings in a variety of industrial and consumer products, including food packaging, non-stick cookware, carpets and upholstery, ski wax, floor wax, outdoor gear, dental floss and firefighting foams.

The best-known PFAS chemicals are PFOA and PFOS, each with a chain of eight carbon atoms. These socalled *long-chain* PFASs have been voluntarily phased out in the United States, Europe and Japan. Many long-chain PFAS are now being replaced in multiple applications with chemicals with fewer fluorinated carbon atoms, often referred to as *short-chain* PFAS. The PFAS chemical family, and new generation PFAS being substituted for the phased out PFAS, however, include many other fluorinated compounds with different structures (see Figure 1).

What Are PFAS?

- PFAS = Per- and Polyfluoroalkyl Substances
- Class of over 3,000 fluorinated organic chemicals containing at least one fully fluorinated carbon atom

(C	_n F _{2n+1} -COOH)	O PFDA (n=10) O PFUNA (n=11)	1407 1069
		O PFDoA (n=12) O PFTrA (n=13) O PFTeA (n=14)	1016 426 587
10	PFSAs o	 PFBS (n=4) PFHxS (n=6) PFOS (n=8) PFDS (n=10) 	654 1081 3507
perfluoroalkyl acids • (PFAAs)	PFPAs • $F_{2n+1} - PO_3H_2$		340 33 31 35
	PFPiAs -PO ₂ H-C _m F _{2m+1})	 C4/C4 PFPiA (n,m=4) C6/C6 PFPiA (n,m=6) C8/C8 PFPiA (n,m=8) C6/C8 PFPiA (n=6,m=8) 	4 12 12 8
PFECAs	& PFESAs -C _m F _{2m+1} -R)	• ADONA ($CF_3 - O - C_3F_6 - O - CHFCF_2 - COOH$) • GenX ($C_3F_7 - CF(CF_3) - COOH$) • EEA ($C_2F_5 - O - C_2F_4 - O - CF_2 - COOH$) • F-53B ($CI - C_6F_{12} - O - C_2F_4 - SO_3H$)	4 26 6 14
	SF-based	 MeFBSA (n=4,R=N(CH_3)H) MeFOSA (n=8,R=N(CH_3)H) EtFBSA (n=4,R=N(C_2H_2)H) EtFOSA (n=8,R=N(C_2H_2)H) 	25 134 7 259
PFASS o su	bstances o n+1-SO ₂ -R)	 MeFBSE (n=4,R=N(CH₃)C₂H₄OH) MeFOSE (n=8,R=N(CH₃)C₂H₄OH) EtFBSE (n=4,R=N(C₂H₂)C₂H₄OH) EtFOSE (n=8,R=N(C₂H₂)C₂H₄OH) 	24 116 4
> over 3000 PFASs may have been PFAA o precursors		• SAmPAP { $[C_8F_{17}SO_2N(C_2H_5)C_2H_4O]_2 - PO_2H$ } • 100s of others • 4:2 FTOH (n=4,R=OH)	146 8 106
on the global fluorot su	elomer-based bstances •	 6:2 FTOH (n=6,R=OH) 8:2 FTOH (n=8,R=OH) 10:2 FTOH (n=10,R=OH) 12:2 FTOH (n=12,R=OH) 	375 412 165 42
(C _n F _{2n}	$-C_2H_4-R$	• 6:2 diPAP $[(C_6F_{13}C_2H_4O)_2 - PO_2H]$ • 8:2 diPAP $[(C_8F_{17}C_2H_4O)_2 - PO_2H]$ • 100s of others • polytetrafluoroethylene (PTFE)	23 25
fluoro	olymerco	o polyvinylidene fluoride (PVDF)	

Wang, et al. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518; DOI: 10.1021/acs.est.6b04806

PFAS: Widespread Use Across Sectors

- Carpets & Upholstery
- Waterproof apparel
- Waxes (e.g., floors, skis)
- Non-stick cookware
- Oil and grease resistant food packaging
- Personal care products (e.g., dental floss)
- Paints
- Polymers
- Fire fighting foams

Drinking Water Contamination

Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants Xindi C. Hu et al., Environ. Sci. Technol. Lett., 2016, 3 (10), pp 344–350 DOI: 10.1021/acs.estlett.6b00260

Focus of Regulatory Activity

ACTION

OOO FOF a Gancer Free Economy

Regulatory Activity

- Washington State HB2658 / SB6396: Adopted 2018
 - Prohibits the manufacture and sale of food packaging containing PFAS and requires the Dept. of Ecology to conduct an assessment on safer alternatives by 2020
- Washington State restriction on PFAS-containing firefighting foam from July 1, 2018
- California Safer Consumer Products Program
 - <u>PFAS in carpets and textiles</u> proposed as product-chemical combination for focus in 2018-2020
- European Union:
 - Ongoing monitoring of PFAS in food
 - February 2018 revised drinking water standards for PFAS as a class

Exposures & Impacts

- Health impacts
 - PFOA: Kidney, testicular cancer
- Other health effects:
 - hormone disruption, immune system effects
 - e.g., decreased response to vaccines in children
 - high cholesterol, thyroid disease, hypertension
 - lowered sex and growth hormones in children
 - altered mammary gland development
- Key exposure routes
 - direct contact or inhalation, food, consumer products, house dust, contaminated drinking water, eating fish and shellfish, or through workplace exposures
 - Potential for high aggregate exposure from multiple sources due to wide use
- Current focus on food contact materials because of direct exposure pathways

ENVIRONMENTAL PERSISTENCE BIOACCUMULATION UBIQUITY

Industrial release

Flame retardant release

Surfactant release

Slide courtesy of Dr. Graham Peaslee

Village

Hoosick

Falls

WANCE PLASING

ENVIRONMENTAL PERSISTENCE

Routes of Exposure from Food Service Ware

- Ingestion and direct contact with food packaging
- Landfill leachate
- Composting of food service ware

Slide courtesy of Dr. Graham Peaslee

<u>Oliaei F</u>, <u>et al.</u>, <u>Environ Sci Pollut Res Int.</u> 2013, 1977-92.

Molded Fiber Products

Bowls

Clamshells

Take-Out Containers

Coated Paper/Paperboard Products

Food trays, boats, scoops

Pizza boxes

Bags, wrappers, food liners, sandwich bags

Food Contact Materials

pubs.acs.org/journal

Fluorinated Compounds in U.S. Fast Food Packaging

Laurel A. Schaider,^{≉,†⊚} Simona A. Balan,[‡] Arlene Blum,^{§,∥} David Q. Andrews,[⊥] Mark J. Strynar,^{#⊚} Margaret E. Dickinson,[∇] David M. Lunderberg,[∇] Johnsie R. Lang,^O and Graham F. Peaslee[@]

Silent Spring Institute

University of Notre Dame / Hope College

Green Science Policy Institute

Environmental Working Group

U.S. EPA National Exposure Research Laboratory

CA Dept. of Toxic Substances Control

Over 400 samples tested for total fluorine with PIGE

27 fast food chains

Schaider et al. 2017. ES&T Letters.

Paper wrappers most likely to contain fluorine

Collaborative Network

Avoiding Hidden Hazards A Purchaser's Guide to Safer Foodware

Table 1: Fluorine (F) Test Results by Product Type

Product Type	No/Low F	F	#Tested
Plates	26	32	58
Bowls/Soup Containers	24	23	47
Clamshells	4	17	21
Trays	0	7	7
Food Boats	4	0	4
Total Tested	58	79	137

* CEH

CENTER for ENVIRONMENTAL HEALTH

	Lab Results	Manufacturer or Brand	Type of Product	Product Number/ SKU #	Product Description (link to photo)	Product Material Type	BPI Certified?
	No F	Vegware	Soup Container	SC-08	White 8 oz Soup Container	PLA Coated Board	Yes
	No F	Walgreen's	Bowl	285821	Nice Extra Strong 20 oz Paper Bowl	Paper (Unknown Coating)	No
	No F	World Centric	Soup Container	BO-PA-8	White 8 oz Soup Bowl	PLA Coated Paperboard	Yes
	Low F	Eco-Products	Soup Container	EP-BSC8-WA	Brown 8 oz Soup Container	Made from "100% Renewable Resources," PLA Lined	Yes
	Low F	Eco-Products	Soup Container	EP-BSC8-WA	Brown 8 oz Soup Container	PLA Coated Paperboard	Yes
	Low F	Karat Earth	Soup Container	KE-KDP8	White 8oz Eco Friendly Paper food Container <u>Generic</u>	PLA Coated Paperboard	Yes
	Low F	Solo	Soup Container	Unknown	White and Blue Biodegradable Soup Container	Paper Lined with HDPE	No
	Low F	World Centric	Soup Container	BO-PA-12	White 12 oz Paper Hot Soup Bowl	PLA Coated Paperboard	Yes
	F	Bare by Solo	Bowl	12BSC-2050	White 12 oz Square Bowl	Sugarcane	Yes
	F	Be Green Packaging	Bowl	BG-B032	<u>Brown 32 oz Bowl</u>	Blend of Plant Fibers	Yes
	F	Be Green Packaging	Bowl	BG-0B-321	Brown 32 oz Oval Bowl	Blend of Plant Fibers	Yes
3	Foodware Database Legend Plates Bowls Clamshells Trays_Boats +						

New York's Green Purchasing and Agency Sustainability Program

- Amended specifications to prohibit containers and packaging with intentionally added PFAS
- Established a clear hierarchy of preferable options
 - Reusable
 - Certified compostable without PFAS
 - Recyclable without polystyrene (PET and PP preferred)
 - Recycled content or sustainably harvested renewable content

Department of Environmental Conservation

"... certified, commercially compostable materials that do not contain PFCs should be used."

2015 compostable food ware contract required products free of perfluorinated grease barriers Amended contract language

Per- and polyfluoroalkyl substances (PFAS) must not be added to products. To comply with this requirement, Contract Vendor must submit test results demonstrating that each proposed <u>fiber-based</u> product contains less than 100 ppm of fluorine. Information on testing protocol and recommended labs is available, upon request.

MINNESOTA POLLUTION CONTROL AGENCY

Responding to PFAS in single use food ware

Food and food-soiled paper to green bin

Compost

San Francisco, CA

What's SF doing?

Purchasing Safer Compostable Food Service Ware

HOW TO AVOID FLUORINATED CHEMICALS

What are fluorinated chemicals?

Chemicals known as per- and polyfluoroalkyl substances ("PFAS") constitute a class of over 3,000 fluorinated chemicals that persist in the environment for a very long time. The most studied chemicals in the class, PFOA and PFOS, have been associated with cancer, developmental toxicity, immunotoxicity, and other health effects. The vast majority of other PFAS have little to no data demonstrating their safety and available studies indicate similar health concerns.

PFAS are highly persistent, ubiquitous, and can migrate into food from packaging and food service ware. Upon disposal, PFAS can contaminate drinking water, compost, and agricultural crops. For more information about the human health and environmental hazards of PFAS, see the <u>Cancer-Free Economy Network's PFAS</u>. <u>Hazards Factsheet</u>.

Manufacturers of disposable food packaging and food service ware often add PFAS to impart moisture, oil, and grease resistance. PFAS are also added to fabrics, carpets, furniture, clothing, and fire-fighting foams for their non-stick, lubricating, waterproof, stain-resistant, and oil and grease resistant properties.

As a purchaser, you can protect your health and the health of the communities you serve by purchasing PFASfree food service ware products.

Scope

food trays, boats, and scoops deli and portion cups

boxes, such as for pizza and pastries

Bags, wrappers, bakery liners such as muffin papers and sandwich bags

Solutions – Other materials

Palm Leaf

Bamboo

Solutions – Machine finished

Also called:

- Mechanical densification
- Mechanically glazed
- Natural greaseproof paper
- Uncoated grease resistant

How it works:

- Refining of the fibers to make a dense structure
- Dense structure lowers air permeability and increases grease resistance.

Solutions – Coated Paper

PLA coated paper

CLONDALKIN

a group with focu

CTION

ECOWAX[®]

Clay coated paper

Bio-wax coated paper

Solutions – Coated Paper

Unknown Coatings

Soak-proof, cut resistant, microwave safe

EnShield[®] Paperboard

EnShield[®] Paperboard

Proprietary Coatings

Oil and grease resistant, No LDPE, No fluoro-carbons

PFAS-free Products

MATERIAL CATEGORY	BOWLS	TAKE-OUT & SOUP COUNTAINERS	PLATES	CLAMSHELLS	TRAYS, BOATS, & SCOOPS	DELI & PORTION CUPS	BAGS, WRAPPERS & LINERS
PLA (biodegradable plastic)	<u>GrowPlastics</u>		<u>GrowPlastics</u>	<u>Green Safe</u> <u>Products,</u> <u>World Centric,</u> <u>Eco-Products</u>	<u>GrowPlastics</u>	World Centric, Eco-Products, GrowPlastics	
Bamboo	<u>Bambu</u>		<u>Bambu</u>				
Palm Leaf	<u>Resposable,</u> <u>Leafware</u> <u>by BioMass</u> <u>Packaging</u>		<u>Resposable,</u> <u>Leafware by</u> <u>BioMass</u> <u>Packaging</u>				

Excerpt of table in Purchasing Guide

PFAS-free Coatings

Brand & Link to Info	Manufacturer	Solution	Applications
<u>Earthchoice®</u>	Domtar	Uncoated Grease Resistant Paper	Food Packaging Papers are ideal for: Baking Cup Stock Char-Resistant Papers Grease-Resistant Papers Laminating Base (Foil & Polyextrusion) Market/Steak Interleaving Paper Specialty Bag Stick Papers Twisting/Confectionery Wrappers Waxing Base
EcoARMOUR	Bercen	Polymer Coating	Food Packaging
Ecowax [®]	Clondakin Group	Bio-wax Coating	Coating from vegetable sources such as maize, rapeseed, and other high oil content plants
<u>Enshield®</u>	West Rock	Proprietary Treatment	Best used with: Foodservice Takeout Packaging Bakery Frozen Foods

Excerpt of table in supplemental resource

Drivers: WA State Legislation

Washington becomes first state to ban nonstick chemicals in food packaging

by Anna Giaritelli | April 10, 2018 12:00 AM

Democratic Gov. Jay Inslee in March signed a bill into law that will phase out perfluoroalkyl and polyfluoroalkyl substances, or PFAs, in food packaging such as popcorn bags and burger wrappers. (AP photo)

Effective January 1, 2022

Drivers: Composting Standards

BIODEGRADABLE PRODUCTS INSTITUTE

100 ppm limit on PFAS in certified products Effective January 1, 2020

Drivers: Public Concern

EcoWatch

By DENNIS THOMPSON | HEALTHDAY | February 1, 2017, 12:43 PM

Are there toxins in your fast food packaging?

/ LISOVSKAYA NATALIA, GETTY IMAGES/ISTOCKPHOTO f Share / ♥ Tweet / ☺ Reddit / F Flipboard / @ Email

Many grease-resistant fast-food wrappers and boxes contain potentially harmful chemicals that can leach into food, a new study contends.

These Toxic Chemicals in Food Packaging Are (Meals

By Rachel Smilan-Goldstein

On a busy weeknight, takeout and fast food are easy dinner time solutions. But y meal may come with a side of toxic fluorinated chemicals.

Challenges: Molded Fiber

sugarcane bagasse

No PFAS free products to date

Technical Challenge

Challenges: "Safer"

Avoid regrettable substitutions

Challenges: CBI

Confidential Business Information

Proprietary Formulations

Ingredients	%	Hazard(s)
Proprietary #1	?	?
Proprietary #2	?	?
Proprietary #3	?	?
Proprietary #4	?	?

= Unknown Hazards

Need: Hazard assessment

Evaluate all chemicals in the product

- Transparent method, assessed by 3rd party
- Hazard results communicated while protecting CBI

Ingredients	%	Hazard(s)
Proprietary #1	5	Benchmark-2
Proprietary #2	20	Benchmark-3
Proprietary #3	35	Benchmark-2
Proprietary #4	40	Benchmark-4

Resources

- <u>A Guide to Purchasing PFAS-Free Food</u> <u>Service Ware</u> by Cancer Free Economy Network
- Avoiding Hidden Hazards: A Purchaser's Guide to Safer Foodware by Center for Environmental Health
- <u>GreenScreen® for Safer Chemicals</u> by Clean Production Action

Thank You!

Shari Franjevic

GreenScreen Program Manager

Clean Production Action shari@cleanproduction.org www.cleanproduction.org

Ann Blake

Founder & Principal

Environmental & Public Health Consulting

ann@annblake.com

http://www.annblake.com/

James Ewell

Senior Director of Sustainable Materials

GreenBlue

ewell@greenblue.org

http://greenblue.org/

SCRATCH SLIDES

MINNESOTA POLLUTION CONTROL AGENCY

Responding to PFAS in single use food ware

- Products must be certified or recognized by one or more of the following certification organizations or programs:
 - Biodegradable Products Institute (U.S.)
 - AIB Vinçotte Inter: OK Compost (Belgium)
 - Australian Environmental Labeling Association
- C) Product may not contain perfluorinated grease barrier compounds. Bidders shall provide affadavits from manufacturer, guaranteeing that perfluorinated compounds were not used or added as the product was made.
- B) All compostable plastic products offered must bear a clearly visible, easily distinguishable label or marking indicating the product's ability to be composted.
 - The text of the product's label or marking must include the word "COMPOSTABLE."
 - The label or marking must be present on each individual item.
 - The State prefers the label or marking to be green in color and to include the logo of the certifying body.
- C) Product may not contain perfluorinated grease barrier compounds. Bidders shall provide affadavits from manufacturer, guaranteeing that perfluorinated compounds were not used or added as the product was made.

